Reduced Magnetohydrodynamic Theory of Oblique Plasmoid Instabilities

Scott Baalrud, Amitava Bhattacharjee, and Yi-Min Huang

Center for Integrated Computation and Analysis of Reconnection and Turbulence (CICART)

University of New Hampshire

Center for Magnetic Self Organization meeting
Durham, New Hampshire, October 19, 2011
Outline

• Use boundary layer theory to derive the plasmoid dispersion relation including oblique angles from linear RMHD for Harris equilibrium

• Compare results of BL theory with direct numerical solutions

• Angle of obliquity: $\theta = \arctan(k_z/k_y)$, \hat{z} guide field direction, \hat{y} sheared field direction

• Main results:
 -> Resonant point shifts: $x_s = -\lambda\arctanh[k_z B_{zo}/(k_y B_{yo})]$
 -> Instability requires $|\theta| < \arctan(\bar{B}_{yo}/B_{zo})$
 -> Most unstable angle is oblique ($\theta \neq 0$) in the constant-ψ branch
 -> Most unstable angle is parallel ($\theta = 0$) in the nonconstant-ψ branch
 -> Most unstable wavenumber lies at intersection of two branches, and is a parallel mode
 -> Magnetic island topology changes for oblique modes
Motivated by Collisionless Kinetic Theory

- Daughton et al. Nature Phys. 7, 539 (2011), show discrepancy between collisionless kinetic theory and linear Vlasov simulations for oblique modes
- Suggested that this is a breakdown of asymptotic boundary layer analysis

Figure 2 | Theoretical predictions for oblique tearing instability. The asymptotic theory (solid) from equation (1) is compared with the exact Vlasov results (dashed) as a function of oblique angle $\theta = \tan^{-1}(k_y/k_x)$ for the mass ratio m_i/m_e and sheet thickness λ indicated. **a-c**, The growth rate; **d**, the real frequency corresponding to **c**. Other parameters are held fixed, $k\lambda = 0.4, B_{y0} = B_{x0}, T_i = T_e$ and $n_b = 0.3n_0$.

CMSO meeting, October 19, 2011, p 3
We First Consider the MHD Problem

- Heuristic sketch of constant flux surfaces: (a) $\theta = 0$, (b) $\theta \neq 0$

- Oblique plasmoids are similar to $n > 0$ tearing modes in a tokamak

- Two main differences:
 1. Current distributions: smooth (tokamak), current sheet (plasmoid)
 - Consequences for scaling with resistivity
 2. Boundary conditions: periodic (tokamak), open (plasmoid)
 - Consequences for the possible unstable modes (n and m number for tokamak, k and θ for plasmoid)
Use the Linearized Reduced MHD Equations

- Reduced MHD equations [Strauss, Phys. Fluids 19, 134 (1976)]:

\[
\begin{align*}
\partial_t \Omega + [\Omega, \phi] &= [J_z, \psi] + B_z \partial_z J_z \\
\partial_t \psi &= B_z \partial_z \phi + [\phi, \psi] + S^{-1} \nabla^2 \psi + E_o
\end{align*}
\]

Vorticity: \(\Omega \equiv -\nabla^2 \psi \)

Current along \(\hat{z} \): \(J_z = -\nabla^2 \psi \)

Perpendicular gradient: \(\vec{\nabla}_\perp = \partial_x \hat{x} + \partial_y \hat{y} \)

Poisson bracket: \([f, g] = (\nabla f \times \nabla g) \cdot \hat{z} \)

- Linearize equations: \(f = f_o + f_1(x) \exp[i(k_y y + k_z z) + \gamma t] \)

\[
\gamma(\phi_1'' - k_y^2 \phi_1) = iF(\psi_1'' - k_y^2 \psi_1) - iF'' \psi_1
\]

and

\[
\gamma \psi_1 = iF \phi_1 + S^{-1}(\psi_1'' - k_y^2 \psi_1)
\]

- Have assumed \(\partial_x \phi_o, \partial_y \phi_o \ll \gamma \), and

\[
F \equiv \vec{k} \cdot \vec{B}_o
\]

- Will use \(k \) and \(\theta \) instead of \(k_y \) and \(k_z \):

\[
k = |k_y|[1 + \mathcal{O}(\epsilon)] \quad \text{and} \quad k_z/k_y = \arctan(\theta) \simeq \theta + \mathcal{O}(\epsilon^3)
\]
Boundary layer analysis: Outer region

- In the outer region, we assume $S^{-1} \ll \gamma \ll 1$
- RMHD equations reduce to the ideal MHD force balance

$$\psi_1'' - (k^2 + F''/F)\psi_1 = 0$$

- Match inner and outer regions via the tearing stability index\(^1\)

$$\Delta' \equiv \lim_{\varepsilon \to 0} \frac{1}{\psi_1(x_s)} \left(\frac{d\psi_1}{dx} \bigg|_{x_s+\varepsilon} - \frac{d\psi_1}{dx} \bigg|_{x_s-\varepsilon} \right)$$

x_s is the resonance point: $F(x = x_s) = 0$

- (1) In the large k limit: $\Delta' \to -2k$
- (2) In the small k limit:

$$\Delta' \to \frac{[F'(x_s)]^2}{k} \left(\frac{1}{F_{-\infty}^2} + \frac{1}{F_{\infty}^2} \right)$$

- Get a good approximation by adding the asymptotic solutions

$$\Delta' \sim \frac{[F'(x = x_s)]^2}{k} \left(\frac{1}{F_{-\infty}^2} + \frac{1}{F_{\infty}^2} \right) - 2k$$

\(\Delta' \) for Harris Equilibrium

- We concentrate on the Harris current sheet with guide field
 \[\vec{B}_o = \vec{B}_{oy} \tanh(x/\lambda) + B_{oz} \]

- For this, the resonant point is
 \[x_s = -\lambda \arctanh(\mu) \quad \text{where} \quad \mu \equiv \frac{k_z B_{zo}}{k_y \vec{B}_{yo}} \simeq \theta \frac{B_{zo}}{\vec{B}_{yo}} \]

- Existence of a resonant point requires: \(|\theta| \lesssim \vec{B}_{yo}/B_{zo} \)

- At the resonant point: \(F'(x = x_s) = k \vec{B}_{oy}(1 - \mu^2) \)

- Our \(\Delta' \) expression then gives
 \[
 \Delta'_H \simeq 2 \left(\frac{1 + \mu^2}{k} - k \right)

 \]

- Daughton et al. have proposed a different solution\(^2\)
 \[
 \Delta'_D \simeq 2 \left(\frac{1}{k} - k \right) \left[1 + \mu^2 \frac{(1 - k/2)}{1 - k} \right]

 \]

- Both solutions are exact for normal modes \(\theta = \mu = 0 \)

Approximate Solution is Accurate for all Angles

- Numerical solution from ideal MHD force balance with Harris CS
- Both theories asymptote to $\Delta' \rightarrow 2(1 + \mu^2)/k$ for small k
- Possible to choose a k where $\Delta' > 0$ only for oblique modes
Only small k modes have angular dependence

- For large k: $\Delta'_H \rightarrow -2k$, but $\Delta'_D \rightarrow -k(2 + \mu^2)$
- The angular dependence for large k in Daughton’s Δ' is incorrect
- But $\Delta' < 0$ modes are stable, so large k is not so important anyway
Boundary Layer Theory: Inner Region

- Near the resonant point, $x - x_s \equiv \xi \ll 1$, we assume $\partial_x^2 = \partial_\xi^2 \gg k_y^2$
- Expand F to linear order about the resonant point:
 \[F \simeq F'(x_s)(x - x_s) \equiv \alpha \xi \]
- Coppi et al. Sov. J. Plasma Phys. 2, 533 (1976) show:
 \[\Delta' = -\frac{\pi}{8} (S\alpha)^{1/3} \Lambda^{5/4} \frac{\Gamma[(\Lambda^{3/2} - 1)/4]}{\Gamma[(\Lambda^{3/2} + 5)/4]} \]
 where $\Lambda \equiv \gamma S^{1/3} \alpha^{-2/3}$
- Equating this with the outer Δ' determines the growth rate
- In the large k limit (the constant-ψ regime), $\Lambda \ll 1$
 \[\gamma = \left[\frac{\Gamma(1/4)}{2\pi\Gamma(3/4)} \right]^{4/5} S^{-3/5} \alpha^{2/5} \Delta'^{4/5} \]
- In the small k limit (the nonconstant-ψ regime), $\Lambda \to 1^-$
 \[\gamma = \alpha^{2/3} S^{-1/3} - \frac{2\sqrt{\pi} \alpha}{3 \Delta'} \]
Linear growth rate for oblique tearing modes

- Constant-ψ and nonconstant-ψ tearing mode growth rates:

\[
\gamma \tau_A \sim \begin{cases}
S^{-3/5}(k\lambda)^{-2/5}(1 - \mu^2)^{2/5}(1 + \mu^2 - k^2\lambda^2)^{4/5}, & k\lambda S^{1/4} \gg 1 \\
S^{-1/3}(k\lambda)^{2/3}(1 - \mu^2)^{2/3}, & k\lambda S^{1/4} \ll 1
\end{cases}
\]

- Reduces to conventional solutions for parallel modes: $\theta = \mu = 0$

- S is Lundquist number based on current sheet width: $S = 4\pi \lambda V_A/(c^2 \eta)$

- τ_A is Alfvén time based on current sheet width: $\tau_A = \lambda/V_A$

- Peak growth rate is at the intersection of the two branches

\[
k_{\max} \lambda = S^{-1/4}(1 - \mu^2)^{-1/4}(1 + \mu^2)^{3/4}
\]

where

\[
\gamma_{\max} \tau_A = S^{-1/2}(1 - \mu^4)^{1/2}
\]

- Note that growth rates scale with S to a negative exponent
Linear growth rate for oblique plasmoids

- Using the Sweet-Parker aspect ratio: $\lambda = \delta_{\text{SP}} = LS_L^{-1/2}$
- S_L is the Lundquist number based on current sheet length: $S_L = 4\pi LV_A/(c^2\eta)$
- Plasmoid growth rates is then:
 \[
 \frac{\gamma}{\Gamma_o} \sim \begin{cases}
 S_L^{2/5} \kappa^{-2/5} (1 - \mu^2)^{2/5} (1 + \mu^2 - \kappa^2/S_L)^{4/5} \\
 \kappa^{2/3} (1 - \mu^2)^{2/3}
 \end{cases}
 \]
 where $\Gamma_o = V_A/L$ and $\kappa = kL$
- Peak growth rate is at the intersection of the two branches
 \[
 \kappa_{\text{max}} \simeq S_L^{3/8} (1 - \mu)^{-1/4} (1 + \mu)^{3/4}
 \]
 where
 \[
 \frac{\gamma_{\text{max}}}{\Gamma_o} \simeq S_L^{1/4} (1 - \mu^4)^{1/2}
 \]
- Plasmoid growth rates scale with S_L to a positive exponent
- Constant-ψ branch: oblique modes ($\theta \neq 0$) most unstable
- Nonconstant-ψ: Parallel modes ($\theta = 0$) most unstable
BL theory accurately captures growth rate

- Numerical solutions of the linear RMHD equations (circles)
- Red dashed lines show the boundary layer theory
- Blue uses BL theory with $\Delta' = 2/(k\lambda)$ (small k limit)
k Dependance of Growth Rate for Fixed Angles

- Normal modes are most unstable in constant-ψ branch
- Oblique modes most unstable in nonconstant-ψ branch
- $\bar{B}_{yo}/B_{zo} = 0.1$ in all plots shown
Angular Dependence of Growth Rate, fixed S_L

- For a fixed $S_L = 10^8$, vary the wavenumber κ
- Most unstable mode is normal at small κ (nonconstant-\(\psi\))
- Can have only oblique modes be unstable in constant-\(\psi\) branch

\[
\kappa = 1 \times 10^3, \quad 5 \times 10^3, \quad 9 \times 10^3, \quad 1 \times 10^4
\]

$S_L = 10^8$
Angular Dependence of Growth Rate, fixed κ

- For fixed $\kappa = 1 \times 10^4$, vary S_L
- Reach different branches as S_L is varied
- Stable for $\mu > 1$ ($\theta = \bar{B}_{yo}/B_{zo} = 0.1$)
Contours of constant growth rate for $S_L = 10^8$

- Most unstable angle $|\theta| = (\tilde{B}_{yo}/B_{zo})\sqrt{(1 + \kappa^2/S_L)/3}$ in constant-ψ branch
\(\phi_1 \) Symmetry Breaks at Oblique Angles

- Eigenfunctions computed numerically from the linear RMHD equations
- Resonant point given by \(x_s/\lambda \simeq -\arctanh(\theta B_z/\bar{B}_y) \)

\[S_L = 1 \times 10^8, \kappa = 1 \times 10^3 \]

(a)
ψ_1 Flattens for $x > x_s$ for Oblique Modes

- Obliqueness breaks symmetry in the stream function too
- Recall: $S_L = 1 \times 10^8$, $\kappa = 1 \times 10^3$, $\theta = 0, 0.025, 0.025, 0.09$
Constant Flux Surfaces Show Asymmetries

- $\kappa = 10^3$, $S_L = 10^8$, $\bar{B}_{yo}/B_{zo} = 0.1$, and $\psi = \psi_o + 0.1\psi_1$
- $\theta = 0$ (top row), $\theta = 0.05$ radians (bottom row)
Summary

• Extended conventional tearing mode theory to account for oblique modes
• Calculated dispersion relation using Harris equilibrium and RMHD
• Primary difference with 2D theory is the location of the resonant point
 \[x_s = -\lambda \text{arctanh} \left(\frac{k_z B_{zo}}{k_y \bar{B}_{yo}} \right) \]
• Instability requires
 \[|\theta| < \arctan(\bar{B}_{yo}/B_{zo}) \]
 or else there is no resonant point
• Normal modes are most unstable in nonconstant-\(\psi\) branch
• Oblique modes are most unstable in constant-\(\psi\) branch
• Most unstable wavenumber is a normal mode